Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry.

نویسندگان

  • T S Lewis
  • J B Hunt
  • L D Aveline
  • K R Jonscher
  • D F Louie
  • J M Yeh
  • T S Nahreini
  • K A Resing
  • N G Ahn
چکیده

Functional proteomics provides a powerful method for monitoring global molecular responses following activation of signal transduction pathways, reporting altered protein posttranslational modification and expression. Here we combine functional proteomics with selective activation and inhibition of MKK1/2, in order to identify cellular targets regulated by the MKK/ERK cascade. Twenty-five targets of this signaling pathway were identified, of which only five were previously characterized as MKK/ERK effectors. The remaining targets suggest novel roles for this signaling cascade in cellular processes of nuclear transport, nucleotide excision repair, nucleosome assembly, membrane trafficking, and cytoskeletal regulation. This study represents an application of functional proteomics toward identifying regulated targets of a discrete signal transduction pathway and demonstrates the utility of this discovery-based strategy in elucidating novel MAP kinase pathway effectors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of replication-competent HSV-1 Cgal+ strain signaling targets in human hepatoma cells by functional organelle proteomics.

In the present work, we have attempted a comprehensive analysis of cytosolic and microsomal proteomes to elucidate the signaling pathways impaired in human hepatoma (Huh7) cells upon herpes simplex virus type 1 (HSV-1; Cgal(+)) infection. Using a combination of differential in-gel electrophoresis and nano liquid chromatography/tandem mass spectrometry, 18 spots corresponding to 16 unique deregu...

متن کامل

Identification of endosomal epidermal growth factor receptor signaling targets by functional organelle proteomics.

Epidermal growth factor (EGF) receptor (EGFR) signal transduction is organized by scaffold and adaptor proteins, which have specific subcellular distribution. On a way from the plasma membrane to the lysosome EGFRs are still in their active state and can signal from distinct subcellular locations. To identify organelle-specific targets of EGF receptor signaling on endosomes a combination of sub...

متن کامل

O-5: Identification of Novel ImmunodominantEpididymal Sperm Proteins Using CombinatorialApproach

Background: Alteration in the protein signatures of functionally immature testicular spermatozoa occurs during their journey through the epididymis. This leads to acquisition of sperm domain specific functions essential for successful fertilization. Epididymal sperm proteins are preferred targets for immunocontraception as well as in elucidating the causes of infertility. The Background of the ...

متن کامل

Functional proteomics identifies protein-tyrosine phosphatase 1B as a target of RhoA signaling.

Rho GTPases are signal transduction effectors that control cell motility, cell attachment, and cell shape by the control of actin polymerization and tyrosine phosphorylation. To identify cellular targets regulated by Rho GTPases, we screened global protein responses to Rac1, Cdc42, and RhoA activation by two-dimensional gel electrophoresis and mass spectrometry. A total of 22 targets were ident...

متن کامل

The Proteomics Big Challenge for Biomarkers and New Drug-Targets Discovery

In the modern process of drug discovery, clinical, functional and chemical proteomics can converge and integrate synergies. Functional proteomics explores and elucidates the components of pathways and their interactions which, when deregulated, lead to a disease condition. This knowledge allows the design of strategies to target multiple pathways with combinations of pathway-specific drugs, whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 2000